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SUMMARY 
A method is presented for computing time harmonic electromagnetic fields scattered by a eilindrical in- 
homogeneity in a homogeneous medium of infinite extent. Geometrically, the homogeneity is a cylinder of 
arbitrary cross-section. Outside a circular cylinder that completely surrounds the inhomogeneity, the electro- 
magnetic field is expanded in terms of wave functions of the circular cylinder. Inside this cylinder, the 
electromagnetic field equations are transformed into a system of ordinary differential equations in the 'radial' 
direction. The relevant system behaves numerically unstable and is therefore transformed into a stable one 
through a specific transformation scheme. To elucidate the validity and the versatility of the method, numer- 
ical results are presented for fields scattered by a number of different cylindrical inhomogeneities. 

1. Introduction 

In this paper,  a method is presented for computing time-harmonic electromagnetic fields 

scattered by  a cylindrical inhomogeneity in a homogeneous medium of  infinite extent.  The di- 

electric and/or  magnetic properties of  the inhomogeneity are assumed to be independent  of  

the longitudinal Cartesian coordinate z (see Fig. 1), bu t  may vary with the transverse polar  

coordinates r and ~b. Geometrically,  the inhomogeneity is a cylindrical object  o f  arbitrary cross- 

section. The incident  electromagnetic field is due to sources located outside a circular cylinder 

of  radius r l  and the z-axis as axis, that  completely surrounds the inhomogeneity.  Outside this 

circular cylinder (i.e. in Region I), the electromagnetic fields are expanded in terms o f  the wave 

functions of  the circular cylinder. Inside the cylinder, the electromagnetic-field equations are 

transformed into a system of  first-order ordinary differential equations in the radial variable 

r. The medium in a cylinder o f  radius r2 and the z-axis, where 0 < r2 <~ r l ,  is assumed to be 

homogeneous again and consequently,  the field inside this cylinder,  too,  can be expressed in 

terms of  cylindrical wave functions, which facilitates the computat ions  considerably. The 

region between these two concentric cylinders will be referred to  as Region II, the region inside 

the cylinder r = r2 will be referred to  as Region III. At  r = r l  and r = r2,  cont inui ty  condit ions 

apply that  yield the boundary  condit ions needed for the solution of  the differential equations 

to be unique. Unfortunately,  the obtained system of  differential equations appears to be 

numerically unstable. In Section 4, we cope with this problem and present a method to trans- 
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Figure 1. Cross-section of the cylindrical inhomogeneity. The inhomogeneity is enclosed by a cylindrical 
surface of radius r t and the z-axis as axis. 

form the system of differential equations into a related one with better stability properties as 
regards its numerical solution. To illustrate the applicability of  the method, the scattering 
properties of  a number of  inhomogeneities are computed (Section 6). 

The scattering problem under consideration is usually analyzed computationally with the aid 
of  the integral-equation method [1,2,3]. This method, in general, requires a large amount of 
storage capacity and computation time. An alternative to this is furnished by the unimoment 
method [4] where, inside a circular cylinder completely surrounding the inhomogeneity the 
field is computed with the aid of  the finite-element method. Outside this cylinder the fields, 
like in our method, are expanded in terms of the wave functions of  the circular cylinder. 

Although the unimoment method has considerable advantages over the integral-equation 
method, we believe that, in many cases, our method is still to be preferred because: 
(a) The method can be applied with relative ease to a wide range of problems; 
(b) Although [4] does not provide computation times for specific problems, we believe that 

our method, in general, uses a smaller amount of computation time. 

Vincent [5] uses a method that is similar to ours in that he, too, combines an expansion of  the 
field, outside a cylinder of  radius r l ,  in terms of the wave functions of the circular cylinder, 
with first-order ordinary differential equations inside this cylinder. Our method of arriving at 
the system of first-order ordinary differential equations appears to be more straightforward, 
whil_e 5[5]_does not provide a method to cope with th_e difficulty of  numerical instabilities. 

2. Description of the configuration 

In Section 1 the configuration was divided into three different regions. In Table 1 these regions 
as well as their permittivities e and permeabilities/a are defined. Relevant wavenumbers are 
indicated. 

We shall consider time-harmonic fields. The complex time factor exp (-i60t), where i is the 
imaginary unit, 6o the angular frequency and t the time, is omitted in the formulas. Since the 
media in the configuration may be lossy, the constitutive coefficients are, in general, complex 

with a non-negative imaginary part. 

Journal of Engineering Math., Vol. 13 (1979) 107-125 
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TABLE 1. 

Regions in the configuration and their electromagnetic properties 

109 

Region Location Permittivity Permeability Wavenumber 
(0 < ~ < 2rr, (e = e o er) (tz = ~t o ~Ur) (Re(k) ~ 0) 
- ~ < z < ~ )  

1 

Region I r I < r < o o  eoe t go/at k t = w(eoel#oga)~ 
1 

Region II r 2 < r < r I eo e 2 iZolZ 2 k 2 = t o ( e o  e21ZotZ2 ) 2 
t 

Region III 0 < r < r 2 %% t~olZ 3 k3 =tO(eoe31%~%) ~ 

e o and ~u 0 denote the permittivity and the permeability, respectively, in vacuo. 

3. The electromagnetic-field equations and the related system of differential equations 

Outside the region where the sources are located,  the electromagnetic fields in the configura- 

t ion satisfy the source-free electromagnetic-field equations 

V x H = - i w e E ,  V x E = iwt~H, (1) 

where e = e(r)  and/a  =/a(r)  denote the local value o f  the piecewise continuous permit t ivi ty and 

permeabi l i ty ,  resPectively. The incident  field is assumed to have a z-dependence o f  the type 

exp ( i k z z ) .  Because of  the translational invariance o f  the configuration, all fields in the con- 

figuration have this z-dependence in common.  In order to obtain,  in Region II, a system of  

first-order ordinary differential equations in the radial variable r,  we separate in (1) the radial 

field components  from the field components  that  are transverse to the radial coordinate and 

rewrite (1) as 

arE  = azE ' - i ¢ o ~ o ~ n , ,  

a r H  = a z t t  r + i 6 o e o e 2 E , ,  
(2) 

' 1 E ,  ' 
OrE * = D ,E  r + icolaola2H - r 

Er = ( i w e o e : ) _  I (azH * _ 1 a~H) ,  

H = (i¢o~ota~)-' ( 1  a , e  - a E,) .  
r 

We note that  the field quantit ies E z , H z ,  H ,  and E , ,  whose derivatives with respect to  r 

appear  in the left-hand side o f  (2), are piecewise continuous functions o f  q~. These field quanti- 

ties are expanded in terms o f  a Fourier  series with respect to q~. We write 
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E z = exp(ikzz ) ~ Otm(r ) exp(im~b), 
m=-o. 

H~ = (ko/icolao) exp(ikzz) ~ tim(r) exp(im~),  
m = - o o  

H =(ko/iw#o) exp(ikzz) ~ 7m(r ) exp(im¢) ,  m=-oo 

E~= exp(ikzz ) ~ ~m(r)exp(im~), 
m=-** 

(3) 

with 

_1 i 
ko = W(eoPo) 2 , Re(ko) 1> 0. (4) 

Now, substituting (3) in (2), eliminating the field quantities E r and H r and using the ortho- 
gonality properties of  the sequence { exp (im¢)lm = 0, +- 1, -+ 2 ... .  } over the interval 0 < ¢ < 27r, 
we obtain a system of  differential equations that  can be written as 

with 

ar°tm(r)= ~n l/'(1) (r)ti (r) + Zn V(m2.)(r)Tn (r)' • m , n  n 

(3) (r a (r , 1 ar~m(r) = ]~n [¥m,n ) n ) q- ~n [¥(4.)(r)~n(r) -- r tim(r)' 

W(2) ( r )a  (r , ~rTm (r) = ~n W(1,) (r)6n(r) + Zn --m,n n ) 

~r~m (r) :  ~n V(3,)(r)'[n(r) + ~n V(4,)(r)tin (r) - ~ m ( r )  , 

Vm ]) (r ) -  1 f2~r (k~/koe: - kola2) exp (ifn - m)~)d~b, 
,n -- ~ 0 

V (2)(r)= 1 f2,~ ( -  nkz/koe2r ) exp (i(n - m)¢)de~, 
m,  rl" - ~ 0 

1 f 2~  (kota2 - mn/koe2r 2) exp (i(n - m)¢)d¢, 
o 

1 f2rr 
V~4'~ (r) = ~ o (mgz/goe:r) exp (fin - m)O)d¢, 

(5) 

(6) 

and 

w( l ) (r) _ 1 rj2~r 
(k2z/kola2 - ko e2) exp (i(n - m)~)d(~, "Vm'n - ~ o 

(2 )  r 1 f 2 ~  Win'n( ) = -~ff 0 (-- nkz/kop2r ) exp (i(n - m)cp)d¢, 

(7) 

Journal of Engineering Math., Vol. 13 (1979) 107-125 



Scattering by a cylindrical inhomogeneity 111 

W (3) (r) = 1 f 2 n  (koe2 - mn/koP2r  2) exp (i(n - m)qb)dqb, 
m,n ~ o (7) 

W (4)(r)= 1 rj2n 
m , n " " - ~ f f  0 

(mkz/koP2r)  exp (fin - m)~b)d¢. 

Equation (5) constitutes a system of first-order ordinary differential equations. These dif- 

ferential equations are coupled through r-dependent coupling coefficients whose values depend 
on the type of inhomogeneity in Region II. To construct the values of  the field quantities, the 
differential equations are to be supplemented by a suitable number of  boundary conditions. 

These boundary conditions follow from the continuity of  the tangential field components 
across r = rl  and r = r2. This requires expressions for the field quantities Ez,  H ~ , H  z and E~ in 
Regions I and III. In these homogeneous regions the field quantities can be expressed in terms 

o f  E z and H z . In Region I , E  z and H z are written as 

Ez _ i E s _ -  Hzi -lrz + z, Hz +Hi,  (8) 

where i i E z , H  z denote the z-components of  the 'incident field', i.e. the field that would exist if 
no inhomogeneity were present s s and Ez, H z denote the z-components of the 'scattered field', i.e. 
the field that is due to the presence of  the inhomogeneity. Since the incident field is bounded 
at r = 0, it can be expressed in terms of cylindrical wave functions as 

E i exp ( ikzz)  ~,n A E  z = m Jm (FIr)  exp (imp), 

H i (ko/ iwPo) exp ( ikzz)  ~'m A n  z = m Jm (FIr)  exp (im¢), 

(9) 

with 

r ,  = (k~ - k~)  -~ with Re(r1) /> 0 (10) 

and where J_m(Z) = ( -  1) m Jm(Z). In (9), Am e and A n are constants that follow from the 
prescribed source distribution; they are considered to be known. In the same way the scattered 
field, outside the cylinder of  radius r l ,  can be written as 

E~z = exp z r) exp (im~b), 

= (ko/i¢opo) exp ( i k z )  ~'m B~mH(l ) ( r l  r) exp (im¢), 

in Region I (11) 

where H ( ~  (z) ~u(1) z E H _ = exp(im~rm, h ( ) and where B m and B m are as yet unknown constants. Now 
substituting (9) and (11) in (8), we obtain expressions for E z and H z for r~ < r < ~ in terms of  
cylindrical w ave functions. The corresponding expressions for E~ and H~ are, using (1), ob tained 
a s  
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mkz (AEm (r,r) ~ (2 )  (r,0) E b = -- exp (ikzz) ~m ! r p  Sm + 

+ kOUlr, ~(A" S'. (r,0 + ~ # ' ) '  ( r , 0 )  }exp (imp), 

 oe, (A m H ~  = - (ko/i(aJId O) exp ( i k zg )  ~m I . - ~ 1  (r, 0 + ~ n~')' (r, 0) 

+ ~  (AH Jm ( F i r ) +  B~m H(1) (I' ,r)) } exp (im¢), 

(12) 

where a dash denotes differentiation with respect to the argument. Using the expressions for 
E z and H z in Region I (eqns. (8), (9) and (11)) and in Region II (eq. (3)), we arrive at expres- 
sions for the unknown constants in the expressions (11) for the scattered field by taking the 
limit r ~ rl in the expressions that hold in Region I and taking the limit r 1" r~ in (3) and using 
the continuity of E z and H z at the surface of the cylinder r = r l .  In this way we obtain the 
relations 

aem -- ( %  (r,)  - a , e Jm (r ,  ~1 ))/#m' ) (r ,  r, ), 

= (~'m (rl) -- AH Jm(r'~'))m(m ' ) ( r ,  ~,). 
(13) 

Using the continuity of H~ and E~b at r = r~ and eliminating the unknown constants B E and 
Bm n from the resulting equations by using (13), we obtain the boundary conditions 

2ik°elit AEm = koel rlrlH(m 1)' (Fir1) °tin (rl) + r2rt 1H(1)(rlrl)3m(rl)m 

+ mkzH(ml)(Plrl)Tm(r, ), 

2ikolal A n =mkzHO )(Pxrl)am(rl)  
It m 

+ ~ o u , r , ~ , n ~ )  ' (r,rl)Tm(r,) + r ] r ~ n O ) ( r , r , ) ~  (r~). 

(14) 

Having derived the boundary conditions that apply to r = rl we will now derive the ones 
that apply to r = r2. Since the fields are bounded at r = O,E z and H z can, in Region III, be ex- 
pressed, in terms of cylindrical wave functions, as 

E = exp (ikzz) Y.mCem J,n(Par) exp (imp), 

H z = (ko/iwla o) exp (ikzz) T, m cHIn Jm (Fa r) exp (im~b), 
in Region III (15) 

where 

2 l_ 
ra = (k] - kz )2 with Re(Fa) i> 0. (16) 
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In (15), Cm E and Cm n are as yet unknown constants. As before, we can express E¢ and He in 
terms of E z and H z and thus obtain expansions for E¢ and He in Region III. Using the expres- 
sions for E z and H z in Region II (eq. (3)) and in Region III (eq. (15)) and using the continuity 
of  E z and H z at the surface of the cylinder r = r2, we arrive at expressions for the unknown 
constants in the expressions (15) for the field in Region III. In this way, we obtain the relations 

CEm = a m ( r~ ) / J~ ( r3r2 ) ,  CUre : "rm(r2) /Jm(r3r2) .  (17) 

Using the continuity of E~ and H~ at r = r2 and eliminating the unknown constants Cm E and 
Cm H from the resulting equations by using (17), we obtain the boundary conditions 

ko e3 F3 r2Jm (1-'3 r2 )a  m (r2) + r~ r2 Jm (P3 r2 )/3 m (r2) 

+ m k z J  m (F3r2)7,~ (r2) = 0, (18) 

m k z J  m (P 3r2 )a  re(r2) 

+ k o t l 3 r 3 r ~ J ~ ( r 3 r 2 ) T m ( r 2 )  + r ~ r ~ J ( r 3 r ~ ) S m ( r 2 )  = O. 

Now the system of  differential equations (5), together with the boundary conditions (14) and 
(18), constitutes a two-point boundary-value problem for the calculation of the field in Region 
II. Once this problem has been solved, the fields in Regions I and III are computed from (13) 
and (17). Inspection of  the system of differential equations (5), of the coupling coefficients 
(6) and (7) and of the boundary conditions (14) and (18) reveals that when k z = 0, i.e. when 
the fields in the configuration are independent of z, the two-point boundary-value problem 
separates into two, mutually uncoupled, boundary-value problems each containing one half of 
the number of equations. For the first we have E z --/: O, H~ 4= O, H z = 0 and E~ = 0, generally 
referred to as the case of E-polarization. For the second we have E z = O, H~ = O, H z ~ 0 and 
E~ = 0, the case of  H-polarization. The governing equations are easily obtained from the equa- 
tions that have been derived above, by putting k z = 0. In our further analysis we will consider 
the general case. 

The numerical solution of the two-point boundary-value problem can be obtained by using 
one of the standard techniques, for instance the shooting method, which case the problem is 
replaced by a related initial-value problem [6,7,8]. However, the relevant initial-value problem 
turns out to be numerically unstable. Consequently, only inhomogeneities of relatively small 
dimensions can be dealt with in this way. In Section 4 we shall transform the present two-point 
boundary-value problem into a different boundary-value problem, the latter having the ad- 
vantage of leading to an associated initial-value problem that is numerically stable. 

4. Transformation of the system of differential equations into one that is stable 

In order to cope with the stability problems that are posed by the solution of (5), we introduce 
. + ± 

new r-dependent functions e m (r) and h m (r) that are defined as follows 
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em (r) = Otm (r ) + Zm[Jm (r), 

hm(r ) = ~/m(r) + ZrnSrn(r), 

(19) 

where 

Z m = (r/ro) (m 2 + ( r / ro )2 f  ~ (20) 

In (20), ro is some positive number that will be chosen later on, such that optimum results are 
obtained. The differential equations to be satisfied by e m (r) and h,~ (r) are obtained from (5) 
and (19) as 

2are m =~, ( V ( I ) z  -1 + Z W(a)))e ÷ n m,n n - ( A m ~ m , n  + m re, n-- n 

+ F~n(- V ( I ) Z  - '  + ( -  Am~Sm, n + Z,,, W(a)))e7, t t l ,  r l  n _ _ i n  

( 4 )  -1  + -Jr ~ (V (2) + ZmWm,  n Z  )h  n 
n I'n~ n 

-1- Z ( V £  2)  -T- Z m W ( 4 )  Z - I ) h -  , 
" -  " - t  " -  I"71, ~ n n 

2arh m = Z  n (W (2) +-Z V ( O ) Z - I ) e +  - m,n m m,n n n 

. . . .  (2) ~-Z V ( 4 ) Z - I ) e -  
+ ~'n[Wm, n m m,n n n 

- Z V ( a )  h + + T., ( W O ) Z  -~ +(Am6m,  n + rn m,n))  n r l  ~ r¢l~ l,l I I  

+ Z n ( -  WO)Z -1 + , , , , . .  ( -  A,.~,. , .  + z , .  V(2,)))h;,, 

(21) 

with 

Am(r) = - (r/r~)/(m 2 + (r/ro)U); (22) 

6 denotes the Kronecker delta. The corresponding transformation of the boundary condi- 
rtl~ n 

tions (14) and (18) leads to 

4iko e i - -  A ~ = r ,r , (go~,n~m ~; ( r , r , )  + r , n & ' ) ( r ~ r , ) Z ~ ;  (rl))em(r~) 
f f  m 

+ r~r~(koe~H~ ~)' (r ' , r~)  - r , H ~ l ) ( r , r ~ ) Z ~  (r,))e,~(r~) 

+ mkzH(ml )(r, r, ) (h  m ( r , )  + h m ( r l ) ) ,  

4ikolal A n = rnkzH(ml ) (F l r , ) ( e  Z (r , )  + e,~(rl )) 
it m 

+ r,r,(goutntm 1)' ( r , r l )  + rlH(ml)(rlra)Zmt(rl))h~n(rl) 

+ r lr , (koUiH~ ~)' ( r ~ r , )  - r~H~l)(rlrl)Zm~(r~))hm(r~), 

o = r~ ~: (go e ~  (r~ r: ) + r #  m (r3 r:)ZZ 1 (r2))e m (r2) 

+ r~ r~ (ko e ~  (r~ r:) - r~J m (r~ r~)Zm 1 (r:))e ](~) 

+ m k z J m ( r a r 2 ) ( h m ( r 2 )  + h,~(r2)), 

(23) 

(24) 
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0 = mkzJ (F3r2 ) ( em(r2  ) + era(r2)) 

+ r3 r2 (ko/a3J~ (r~ r2 ) + r~J  m (r~ r~ )z  m' (r ,))h m (r2) 

+ F3 r2 (ko/a3J~ (F3 r2) - F3Jm (FB r2 )Z~ (r2))hm(r2). 

(24) 

The two-point boundary-value problem defined by the system of differential equations (21) 
together with the boundary conditions (23) and (24), too, can be solved by using a shooting 
method [6,7,8]. The initial-value problem obtained in this case, turns out to be numerically 
stable. 

Equation (13) is now replaced by 

B m E  1 + 
= (5 (era (r l )  + era(r1 )) - AEm J (FI rl ) ) /H 0 ) ( r l  rl ), 

B~m = (~(hm(r~) + hm-(r~))-  AnmJm(V,r~))/H(m~)(r~r~), 
(25) 

and equation (17) by 

~ m  1 + : ~ (e m (r2) + em(r2))/Jm(P3r2),  
1 

= 2 (hm (r2) + hm(r2 ))/Jm (r3 r2 ). 
(26) 

As to the transformation (19) we note that it was ultimately chosen such that it serves a 
twofold goal. 

Primarily the transformation was designed to overcome the stability difficulties posed by the 
solution of (5). The fact that the system of differential equations (5) turns out to be numerical- 
ly unstable, can be explained by investigating the value of the elements of the coefficient 
matrices in the differential equations as well as the convergence properties of the expansions in 
(3). It can be observed from (6) and (7) that the diagonal elements of (V(m3,)n) and (Wtm3,)n) are 

""(~) .... (~)) do not approximately proportional to m 2 , whereas those of (v,~,n) and I, Wra ,  n . depend on m. 
The behavior of the elements of the other matrices is such that they do not contribute to the 

(3) instable behavior of (5). The properties of the matrices (V~,n)  and (Wtma,)n) cause the con- 
vergence of the expansions o f E  z in terms of a m and H z in terms of 3% to be much better than 
the convergence of the expansions of E¢ in terms of 5 m and H~ in terms of/~m" As a conse- 
quence of the relatively slow convergence of  the/3 m and 5 m series, combined with the properties 
of the matrices CV (3) ~ and (W(ma)n), an appreciable loss of accuracy will occur when carrying m,n~ 
out those summations in (5) that have to do with the elements of the matrices (V(ma,)n) and 
(W(m3,)n), in particular for large values of I m 1. The fact that this first goal is attained by using the 
transformation (19) can be explained by studying the resulting system of differential equations 
(21). In (21), the diagonal elements of all coefficient matrices were approximately proportional 
to m, whereas the convergence properties o fe  m and hm ~ are identical. Because of this, the sum- 
mations in (21) do not suffer from an appreciable loss of accuracy and consequently the initial- 
value problem related to (21) behaves numerically in a stable manner. 

A second consideration concerning the transformation, is related to the r-dependence of the 
coefficient matrices in (5) and (21). The transformation was chosen such that the elements of  
the matrices in (21) show a dependence on r of the order l i t  at small values of r, whereas the 
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(3) elements of the matrices (V(ma,)n) and (lea, n) show a dependence on r of  the order 1/r 2 as 
r ~ 0. The latter fact may cause additional numerical difficulties, in particular for small values 
of r. For larger values of  r, the transformation does not substantially influence the behavior of 
the elements of  the coefficient matrices. 

As to the choice o f r  0 in (20) and (22) we mention that numerical experiments indicate that 
it should be chosen as ro = l [ k o .  This choice, however, turns out to be a not very critical one. 

5. Discussion of the numerical techniques 

In solving the scattering problem under consideration, numerical problems of two different 
kinds are encountered and need some discussion. The first one is posed by the evaluation of 
the integrals in (6) and (7). When the inhomogeneity consists of  a piecewise homogeneous 
medium, e2 and/a2 will have a piecewise constant value over the interval of integration and 
consequently the integration can be carded out analytically. When the inhomogeneity consists 
of an inhomogeneous medium of such a kind that the integration cannot be carried out analyti- 
cally, the interval of  integration is divided into a number of segments that are chosen so small 
that, in each segment, e2 and/a2 can be approximated with sufficient accuracy by either a 
constant or a function that varies linearly with 4. Over each segment, the integrations can then 
be carried out analytically and the integrals over 0 ~< ~ < 2n follow as the sum of the integrals 
over the various segments. The second numerical problem lies in the numerical solution of the 
two-point boundary-value problem defined by (21), (23) and (24). This boundary-value prob- 
lem is solved using a shooting method [8] that replaces the problem by an initial-value problem. 
The initial-value problem is solved in the direction of increasing r starting from r = r 2 . For this, 
we have used the classical fourth-order Runge-Kutta formula [9]. The stepsize in the numerical 
integrations and the number of terms taken into account in the Fourier series [e.g. in (3)] have 
been chosen such that our final accuracy proved to be within a few percent. All computations 
have been carded out in single-precision arithmetic on the IBM-370/158 computer of  the 

Computing Center of the Delft University of  Technology. 
Several checks on the computer program and on the computational results have been carried 

out in order to eliminate possible errors. We mention some of them. 
(1) Reciprocity. In reciprocal configurations (to which class our inhomogeneities belong), 
scattered fields that pertain to two different incident fields should satisfy certain reciprocity 
relations. These relations were satisfied to within about five significant figures. 

(2) Geometrical symmetry. In many cases, the inhomogeneity shows a number of geometri- 
cal symmetry properties. Scattered fields that are associated with incident fields that comply 
with the geometrical symmetry, should reflect this symmetry. This condition, too,was satisfied. 
(3) Convergence ofnumericalprocedures. The accuracy of a numerical integration depends 
on the number of  segments (in (6) and (7)) or on the stepsize (in (21)) that is chosen. The re- 
lation, which is known from numerical analysis, between the number of  segments and the step- 
size on the one hand and the accuracy of the result on the other, proved to be consistent with 
the one obtained from the actual numerical results. 
(4) Solving the scattering problem in different ways, using ourmethod. By choosingthe origin 
of  the coordinate system at two or more different locations in the cross-section of the in- 
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geneity, we obtain numerically independent scattering problems that should, after performing 
appropriate transformations, have the same solution. This condition was satisfied within the 
accuracy of the solution of the scattering problem. (This accuracy can, of  course, be improved 
at the cost of  extra computation time and storage requirements.) 
(5) Comparisonofourresul t swi th those thathavebeenobta inedbyus ingothermethods .  Re- 
suits that have been obtained by using our method of solution are compared with those that 
have been reported in papers that deal with other numerical techniques [1,2,3,4]. Our results 
are found to be in accordance with computational results presented in [1], [2] and [3]. Dis- 
crepancies have been found between our results and some of the results presented in [4]. More 
detailed comments on this are give in Section 6. 

Finally we should consider the number of  terms 2M + 1 (i.e., m = 0, -+ 1 ..... -+ M) that are 

taken into account in the Fourier series in (3), (9), and other equations. Firstly, from the 
properties of  the Hankel functions (see eq. (11)) it follows [10] thatM should be chosen slight- 
ly larger than l~lr~ for optimum results. A second factor that determines the choice of M fol- 
lows from the analysis of  the numerical values of  the coefficients in the Fourier series in (3). 
This analysis leads in many cases to approximately the same value of M. However, in configura- 
tions where the inhomogeneity shows strong local variations in the permittivity and/or per- 

meability, the series in (3) converge relatively slowly and a larger number of  terms has to be 
taken into account in order to arrive at the desired accuracy. 

6. Numerical results 

In this section, numerical results pertaining to a number of  different cylindrical inhomogeneities 
are presented. The scattering properties of the inhomogeneities will characterized by the far- 
field radiation pattern of  the scattered fields. At large distances from the cylindrical inhomo- 
geneity (P l r  >> 1, r >> r~), the scattered fields can be written as 

E~ (2/~rl  r) ~ exp (i(rl r - Ir/4)) exp (ikzz)gE((~), 

H~ = (2/~rrl r) -~ exp (i(rl r - 1r/4)) exp (ikzz)gH((~), 
(27) 

where the far-field scattering patterns gE(¢) and gH(~b) are given by 

ge (~) = ~m BE exp (im (~b - 1r/2)), 

gH(dp) = (ko/it.Oldo) ~,m BH exp (im(~ - n/2)). 
(28) 

These definitions have been chosen in accordance with the definition of the far-field scattering 
pattern in [4] in order to facilitate a comparison between our results and the ones presented in 
[4]. 

In each of the problems to be solved, the incident field is chosen to a be uniform plane 
wave. In the cases of  E- and H-polarization the incident fields have been chosen such that either 
Ez / = 1 or Hz / = 1 at the origin of  the coordinate system. We have investigated the following 
configurations. 
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(1) A circular cylinder with its center offset from the origin. Exact solutions for this configu- 
ration can be obtained using the method of separation of variables [ 11 ]. An excellent agreement 
with these solutions was obtained for the general case (k z :/: 0) as well as for the cases of  E- and 
H-polarization. 

(2) An inhomogeneous dielectric cylinder. The second configuration we have investigated, is 
an inhomogeneous dielectric cylinder in free space [4] having a relative permittivity (see Table 
1) e r = (5 -4(x/a)2)~(1 + 4(y/a)2), (see Fig. 2). Results for this configuration have been ob- 

tained for E- and for H-polarization. We have chosen the free-space wavelength of the incident 
field such that a = 0.229 X where a denotes the radius of the inhomogeneous cylinder. By com- 
paring our results, for the case of E-polarization, with those of [4], this wavelength has been 

chosen such that it is expected to be approximately equal to the wavelength of the incident 
field in [4]. However, although some agreement between our results and those in [4] is ob- 
served in the case of E-polarization, our results for the case of H-polarization differ consider- 
ably from the ones presented in [4]. As to Region III, we mention that we have chosen 
r2 = 0.1 rl = 0.1a. Inside this region, we have approximated the permittivity e r by its value at 
the axis. The error resulting from this approximation is negligible. The computation time for 
each problem amounts to about three seconds. 
(3) Homogeneous dielectric cylinders o f  rectangular or elliptic cross-section. In Figs. 3, 4, 5 

and 6 we present the scattering properties of dielectric cylinders of  either rectangular or ellipti- 
cal cross-section. For reasons of comparison, the dimensions of the inhomogeneities, the 
material properties and the wavelength of the incident fields have been taken from [4]. 
Discrepancies exist between our results and those presented in [4]. The computation time 
amounts to about five seconds for the rectangular cylinder and to about forty seconds for the 
elliptic cylinder. 
(4) A cylindrical vacuum inclusion o f  elliptic cross-section in a homogeneous medium. The 
last configuration to be investigated is a cylindrical vacuum inclusion of elliptic cross-section 
in a homogeneous medium having a permittivity e r = 2.25. 
In Figs. 7 and 8 we present the results for E- and H-polarization, respectively. In these figures 
denotes the wavelength of the incident wave in the medium that surrounds the vacuum inclu- 
sion. The computation time amounts to about ten seconds for the case a = 0.5 ~ (see Figs. 7 and 
8) and forty-five seconds for the case a = X. Finally, we compute the field scattered by a 
vacuum inclusion if the incident uniform plane wave has a z-dependence of the form exp (ikzz), 
k z ~ O. The electric field vector E i and the wave vector of the incident field lie in in a plane 
through the z-axis. Consequently, the magnetic field vector H i is normal to this plane. The 
between the electric field vector and the positive z-direction is 24.6 degree. Again, ~b denotes 
the angle between the plane through the z-axis mentioned above and the plane y = 0. In Figs. 
9 and 10 we present the far-field scattering patterns of the electric and magnetic fields respec- 
tively. These patterns have been normalized with respect to the amplitude of the incident 
electric and magnetic field respectively. The computation time for this problem amounts to 

about two hundred seconds. 
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Figure 2. Far-field scattering pattern IgE(~)l and IgH(~)l of an inhomogeneous cylinder with er = ( 5 -  
4(x/a) 2 )/(1 + 4(y/a) 2 ). 
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Figure 3. Far-field scattering pattern I~(~b) l of a homogeneous dielectric cylinder with rectangular cross- 
section, E-polarization. 
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Figure 4. Far-field scattering pattern I gH(q~) I of a homogeneous dielectric cylinder with rectangular cross- 
section, H-polarization. 
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Figure 7. Far-field scattering pattern IgE(~b) I of a cylindrical vacuum inclusion of elliptic cross-section in a 
homogeneous medium, E-polarization. 
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7. Conclusions 

In this paper a method is presented for computing numerically the time-harmonic fields in the 
presence of  a cylindrical transparent inhomogeneity in an otherwise homogeneous medium of 
infinite extent. The method presented requires, in general, a relatively small amount of compu- 
tation time and storage capacity. As to the computation times mentioned in Section 6, we note 
that they can be reduced substantially by taking into account geometrical symmetry, if present, 
of the scattering inhomogeneities. Another advantage of the method is its flexibility. For a 
specific problem only a subroutine, which is generally very simple, need be written for the 
computation of the integrals in (6) and (7), the major part of the main problem therefore 
remains unchanged. For obstacles that show strong local variations in their permittivity and/or 
their permeability, a large number of terms in the Fourier expansions has to be taken into 
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Figure 10. 
cross-section in a homogeneous medium with an obliquely incident plane wave. 
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account in order to arrive at the desired accuracy and this, even with our method, leads to con- 

siderable computation times. But then, in the general case k z ~ O, no attractive alternative is 
available either. Another limitation seems to be that the method cannot be generalized to prob- 

lems involving perfectly conducting obstacles. For the latter type of  obstacle and in the general 

case k z :/= O, the integral-equation method still seems to be the only method of  a general nature. 

However, when the inhomogeneity has a perfectly conducting part with a circular cross-section, 

the location o f  the origin o f  the coordinate system and the radius r 2 can be chosen such that 

Region III coincides with the conducting cylinder. Now this scattering problem can be solved 
replacing the boundary conditions (24) by 

e~n (r2) + e,~(r2) = O, h ~  (r2) - h~(r2)  = O. (29) 

For some configurations numerical inaccuracies are observed when solving the two-point 

boundary-value problem with a shooting method. As an example, we mention the plane di- 

electric slab as considered in [ 1 ] and [ 12]. For this configuration we were able, with a limited 

accuracy, to reproduce Richmond's results for the case o f  E-polarization [1]. For the case o f  

H-polarization [12], however, we did not succeed in reproducing Richmond's results owing to 

numerical inaccuracies. The latter are due to the fact the system of  algebraic equations that has 

to be solved when applying a shooting method, is ill-conditioned. This problem can be coped 

with by  using, at certain instances during the solution o f  the system of  differential equations, 
a reorthonormalization o f  the initial-value problems by the Gram-Schmidt process [ 13]. 

Finally, we note that on a previous occasion, essentially the same method was succesfully 
applied to a number o f  three-dimensional waveguide discontinuity problems [ 14]. 
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